Package: brglm2 0.9.2

brglm2: Bias Reduction in Generalized Linear Models

Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression).

Authors:Ioannis Kosmidis [aut, cre], Euloge Clovis Kenne Pagui [aut], Kjell Konis [ctb], Nicola Sartori [ctb]

brglm2_0.9.2.tar.gz
brglm2_0.9.2.zip(r-4.5)brglm2_0.9.2.zip(r-4.4)brglm2_0.9.2.zip(r-4.3)
brglm2_0.9.2.tgz(r-4.4-x86_64)brglm2_0.9.2.tgz(r-4.4-arm64)brglm2_0.9.2.tgz(r-4.3-x86_64)brglm2_0.9.2.tgz(r-4.3-arm64)
brglm2_0.9.2.tar.gz(r-4.5-noble)brglm2_0.9.2.tar.gz(r-4.4-noble)
brglm2_0.9.2.tgz(r-4.4-emscripten)brglm2_0.9.2.tgz(r-4.3-emscripten)
brglm2.pdf |brglm2.html
brglm2/json (API)
NEWS

# Install 'brglm2' in R:
install.packages('brglm2', repos = c('https://ikosmidis.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ikosmidis/brglm2/issues

Datasets:
  • aids - The effects of AZT in slowing the development of AIDS symptoms
  • alligators - Alligator food choice data
  • coalition - Coalition data
  • endometrial - Histology grade and risk factors for 79 cases of endometrial cancer
  • enzymes - Liver Enzyme Data
  • hepatitis - Post-transfusion hepatitis: impact of non-A, non-B hepatitis surrogate tests
  • lizards - Habitat preferences of lizards
  • stemcell - Opinion on Stem Cell Research and Religious Fundamentalism

On CRAN:

adjusted-score-equationsalgorithmsbias-reducing-adjustmentsbias-reductionestimationglmlogistic-regressionnominal-responsesordinal-responsesregressionregression-algorithmsstatistics

10.17 score 29 stars 8 packages 100 scripts 4.2k downloads 15 mentions 12 exports 6 dependencies

Last updated 2 months agofrom:60a8c7bb46. Checks:OK: 7 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-win-x86_64NOTENov 11 2024
R-4.5-linux-x86_64NOTENov 11 2024
R-4.4-win-x86_64OKNov 11 2024
R-4.4-mac-x86_64OKNov 11 2024
R-4.4-mac-aarch64OKNov 11 2024
R-4.3-win-x86_64OKNov 11 2024
R-4.3-mac-x86_64OKNov 11 2024
R-4.3-mac-aarch64OKNov 11 2024

Exports:braclbrglm_controlbrglm_fitbrglmControlbrglmFitbrmultinombrnbcheck_infinite_estimatesdetect_separationexpomisordinal_superiority

Dependencies:enrichwithlatticeMASSMatrixnnetnumDeriv

Adjacent category logit models using brglm2

Rendered fromadjacent.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2024-09-12
Started: 2019-02-06

Bias reduction in generalized linear models

Rendered fromiteration.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2024-09-12
Started: 2017-03-21

Estimating the exponential of regression parameters using brglm2

Rendered fromexpo.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2023-02-07
Started: 2023-02-07

Multinomial logistic regression using brglm2

Rendered frommultinomial.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2024-09-12
Started: 2017-07-01

Negative binomial regression using brglm2

Rendered fromnegativeBinomial.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2024-09-12
Started: 2021-07-18

Readme and manuals

Help Manual

Help pageTopics
The effects of AZT in slowing the development of AIDS symptomsaids
Alligator food choice dataalligators
Bias reduction for adjacent category logit models for ordinal responses using the Poisson trick.bracl
brglm2: Bias Reduction in Generalized Linear Modelsbrglm2-package brglm2
Defunct Functions in package 'brglm2'brglm2-defunct check_infinite_estimates detect_separation
Auxiliary function for 'glm()' fitting using the 'brglmFit()' method.brglmControl brglm_control
Fitting function for 'glm()' for reduced-bias estimation and inferencebrglmFit brglm_fit
Bias reduction for multinomial response models using the Poisson trick.brmultinom
Bias reduction for negative binomial regression modelsbrnb
Coalition datacoalition
Extract model coefficients from '"brglmFit"' objectscoef.brglmFit
Extract estimates from '"brglmFit_expo"' objectscoef.brglmFit_expo
Extract model coefficients from '"brnb"' objectscoef.brnb
Method for computing confidence intervals for one or more regression parameters in a '"brglmFit"' objectconfint.brglmFit
Method for computing confidence intervals for one or more regression parameters in a '"brmultinom"' objectconfint.brmultinom
Method for computing Wald confidence intervals for one or more regression parameters in a '"brnb"' objectconfint.brnb
Histology grade and risk factors for 79 cases of endometrial cancerendometrial
Liver Enzyme Dataenzymes
Estimate the exponential of parameters of generalized linear models using various methodsbrglmFit_expo expo expo.brglmFit expo.glm
Post-transfusion hepatitis: impact of non-A, non-B hepatitis surrogate testshepatitis
Habitat preferences of lizardslizards
A '"link-glm"' object for misclassified responses in binomial regression modelsmis
Ordinal superiority scores of Agresti and Kateri (2017)ordinal_superiority ordinal_superiority.bracl
Predict method for bracl fitspredict.bracl
Predict method for brmultinom fitspredict.brmultinom
Residuals for multinomial logistic regression and adjacent category logit modelsresiduals.bracl residuals.brmultinom
Method for simulating a data set from '"brmultinom"' and '"bracl"' objectssimulate.brmultinom
Simulate Responsessimulate.brnb
Opinion on Stem Cell Research and Religious Fundamentalismstemcell
'summary()' method for brglmFit objectsprint.summary.brglmFit summary.brglmFit
'summary()' method for '"brnb"' objectsprint.summary.brnb summary.brnb
Return the variance-covariance matrix for the regression parameters in a 'brglmFit()' objectvcov.brglmFit
Extract model variance-covariance matrix from '"brnb"' objectsvcov.brnb