Package: brglm2 0.9.2
brglm2: Bias Reduction in Generalized Linear Models
Estimation and inference from generalized linear models based on various methods for bias reduction and maximum penalized likelihood with powers of the Jeffreys prior as penalty. The 'brglmFit' fitting method can achieve reduction of estimation bias by solving either the mean bias-reducing adjusted score equations in Firth (1993) <doi:10.1093/biomet/80.1.27> and Kosmidis and Firth (2009) <doi:10.1093/biomet/asp055>, or the median bias-reduction adjusted score equations in Kenne et al. (2017) <doi:10.1093/biomet/asx046>, or through the direct subtraction of an estimate of the bias of the maximum likelihood estimator from the maximum likelihood estimates as in Cordeiro and McCullagh (1991) <https://www.jstor.org/stable/2345592>. See Kosmidis et al (2020) <doi:10.1007/s11222-019-09860-6> for more details. Estimation in all cases takes place via a quasi Fisher scoring algorithm, and S3 methods for the construction of of confidence intervals for the reduced-bias estimates are provided. In the special case of generalized linear models for binomial and multinomial responses (both ordinal and nominal), the adjusted score approaches to mean and media bias reduction have been found to return estimates with improved frequentist properties, that are also always finite, even in cases where the maximum likelihood estimates are infinite (e.g. complete and quasi-complete separation; see Kosmidis and Firth, 2020 <doi:10.1093/biomet/asaa052>, for a proof for mean bias reduction in logistic regression).
Authors:
brglm2_0.9.2.tar.gz
brglm2_0.9.2.zip(r-4.5)brglm2_0.9.2.zip(r-4.4)brglm2_0.9.2.zip(r-4.3)
brglm2_0.9.2.tgz(r-4.4-x86_64)brglm2_0.9.2.tgz(r-4.4-arm64)brglm2_0.9.2.tgz(r-4.3-x86_64)brglm2_0.9.2.tgz(r-4.3-arm64)
brglm2_0.9.2.tar.gz(r-4.5-noble)brglm2_0.9.2.tar.gz(r-4.4-noble)
brglm2_0.9.2.tgz(r-4.4-emscripten)brglm2_0.9.2.tgz(r-4.3-emscripten)
brglm2.pdf |brglm2.html✨
brglm2/json (API)
NEWS
# Install 'brglm2' in R: |
install.packages('brglm2', repos = c('https://ikosmidis.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ikosmidis/brglm2/issues
- aids - The effects of AZT in slowing the development of AIDS symptoms
- alligators - Alligator food choice data
- coalition - Coalition data
- endometrial - Histology grade and risk factors for 79 cases of endometrial cancer
- enzymes - Liver Enzyme Data
- hepatitis - Post-transfusion hepatitis: impact of non-A, non-B hepatitis surrogate tests
- lizards - Habitat preferences of lizards
- stemcell - Opinion on Stem Cell Research and Religious Fundamentalism
adjusted-score-equationsalgorithmsbias-reducing-adjustmentsbias-reductionestimationglmlogistic-regressionnominal-responsesordinal-responsesregressionregression-algorithmsstatistics
Last updated 2 months agofrom:60a8c7bb46. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win-x86_64 | NOTE | Nov 11 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 11 2024 |
R-4.4-win-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-x86_64 | OK | Nov 11 2024 |
R-4.4-mac-aarch64 | OK | Nov 11 2024 |
R-4.3-win-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-x86_64 | OK | Nov 11 2024 |
R-4.3-mac-aarch64 | OK | Nov 11 2024 |
Exports:braclbrglm_controlbrglm_fitbrglmControlbrglmFitbrmultinombrnbcheck_infinite_estimatesdetect_separationexpomisordinal_superiority
Adjacent category logit models using brglm2
Rendered fromadjacent.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2024-09-12
Started: 2019-02-06
Bias reduction in generalized linear models
Rendered fromiteration.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2024-09-12
Started: 2017-03-21
Estimating the exponential of regression parameters using brglm2
Rendered fromexpo.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2023-02-07
Started: 2023-02-07
Multinomial logistic regression using brglm2
Rendered frommultinomial.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2024-09-12
Started: 2017-07-01
Negative binomial regression using brglm2
Rendered fromnegativeBinomial.Rmd
usingknitr::rmarkdown
on Nov 11 2024.Last update: 2024-09-12
Started: 2021-07-18