Package: detectseparation 0.3

detectseparation: Detect and Check for Separation and Infinite Maximum Likelihood Estimates

Provides pre-fit and post-fit methods for detecting separation and infinite maximum likelihood estimates in generalized linear models with categorical responses. The pre-fit methods apply on binomial-response generalized liner models such as logit, probit and cloglog regression, and can be directly supplied as fitting methods to the glm() function. They solve the linear programming problems for the detection of separation developed in Konis (2007, <https://ora.ox.ac.uk/objects/uuid:8f9ee0d0-d78e-4101-9ab4-f9cbceed2a2a>) using 'ROI' <https://cran.r-project.org/package=ROI> or 'lpSolveAPI' <https://cran.r-project.org/package=lpSolveAPI>. The post-fit methods apply to models with categorical responses, including binomial-response generalized linear models and multinomial-response models, such as baseline category logits and adjacent category logits models; for example, the models implemented in the 'brglm2' <https://cran.r-project.org/package=brglm2> package. The post-fit methods successively refit the model with increasing number of iteratively reweighted least squares iterations, and monitor the ratio of the estimated standard error for each parameter to what it has been in the first iteration. According to the results in Lesaffre & Albert (1989, <https://www.jstor.org/stable/2345845>), divergence of those ratios indicates data separation.

Authors:Ioannis Kosmidis [aut, cre], Dirk Schumacher [aut], Florian Schwendinger [aut], Kjell Konis [ctb]

detectseparation_0.3.tar.gz
detectseparation_0.3.zip(r-4.5)detectseparation_0.3.zip(r-4.4)detectseparation_0.3.zip(r-4.3)
detectseparation_0.3.tgz(r-4.4-any)detectseparation_0.3.tgz(r-4.3-any)
detectseparation_0.3.tar.gz(r-4.5-noble)detectseparation_0.3.tar.gz(r-4.4-noble)
detectseparation_0.3.tgz(r-4.4-emscripten)detectseparation_0.3.tgz(r-4.3-emscripten)
detectseparation.pdf |detectseparation.html
detectseparation/json (API)
NEWS

# Install 'detectseparation' in R:
install.packages('detectseparation', repos = c('https://ikosmidis.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/ikosmidis/detectseparation/issues

Datasets:
  • endometrial - Histology grade and risk factors for 79 cases of endometrial cancer
  • lizards - Habitat preferences of lizards
  • silvapulle1981 - Separation Example Presented in Silvapulle

On CRAN:

6.47 score 6 stars 3 packages 19 scripts 1.5k downloads 8 exports 21 dependencies

Last updated 2 years agofrom:e11980d0fc. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 18 2024
R-4.5-winOKOct 18 2024
R-4.5-linuxOKOct 18 2024
R-4.4-winOKOct 18 2024
R-4.4-macOKOct 18 2024
R-4.3-winOKOct 18 2024
R-4.3-macOKOct 18 2024

Exports:check_infinite_estimatescheckInfiniteEstimatesdetect_infinite_estimatesdetect_separationdetect_separation_controldetectInfiniteEstimatesdetectSeparationdetectSeparationControl

Dependencies:backportscallrcheckmateclidescfsgluelifecyclelpSolveAPIpkgbuildpkgloadprocessxpsR6registryrlangROIROI.plugin.lpsolverprojrootslamwithr

Detecting separation and infinite estimates in log binomial regression

Rendered frominfinite_estimates.Rmdusingknitr::rmarkdownon Oct 18 2024.

Last update: 2022-08-27
Started: 2022-08-27

Detect/check for separation and infinite maximum likelihood estimates in logistic regression

Rendered fromseparation.Rmdusingknitr::rmarkdownon Oct 18 2024.

Last update: 2022-08-27
Started: 2020-01-04